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1. Complex action in Quantum Field Theory

Starting from a real action problem and continuing the parameters

wn the complex plane

One must take into account the analyticity properties of the partition
function and expectation values. For simple models these can be found
out, which allows to observe non-trivial convergence properties, etc.
These can be related to phase transitions, to solution multiplicity of
Schwinger Dyson equations, to the behaviour of complex Langevin
simulation, etc. (many papers since the 1980°s: C. Bender,
Gausterer, Guralnik, Salcedo, Namiki, Schiiltke, Nakazano, ... - )



Starting from special problems with complex action

real time (Minkowski) path integral,

non-zero chemical potential in euclidean LGT

d— vacua



2. Minkowski path integral

- equilibrium parameters (masses, decay rates) can be obtained from

euclidean simulations (lattice theory)

- time evolution, especially non-equilibrium field theory: perturbative
methodes, classical dynamics, etc
(Berges, Smit, Bodeker, Garcia-Perez, ...)



Nonequilibrium dynamics, generating functional:

Z[J;p] = Tr {p Te € ch(w)<I>(w)}

P2
_ / dip1dgs p(i01. o) / D' i Je L@+ @) e (@), 1)

©1

with initial-time density matrix p(y1,w2) and C a closed contour
extending along the real ¢ axis.

Expectation of a real-time observable:
p—(0)=¢2

(A(p)) = / dordiss pler, o) / Do Dlip, &Sl 1-i8le-1 4
©

+(0)=¢1

/ Do_Dy et e-lA(p).



3. Non-zero chemical potential.

QCD
Heavy Dense Matter model

Various approximations using the fact that the chemical potential
selects the Polyakov loops in the fermionic determinant: Polyakov
loop models, Potts model, etc( Green and Karsch 1984, Karsch
and Wilde 1985, Karsch and Stickan 2000, Alford et al,
2001,...)

Relativistic Bose gas (Aarts 2008)



QCD grand canonical partition function (Wilson fermions):

7 = /DUe_S, S = Syy —logdet W (3)

3
W = 1-— H;Z (F_HUQ;,ZTZ + F_ZU;ZT_Z)

1=1

— K (GMF+4U3374T4 + e_“F_4U;,4T_4) (4)

Here T are lattice translations, I'+, = 1 &=+, and & is the hopping
parameter. For non-zero p det W and S are complex and direct MC is
not possible. We still have

det W(p) = [det W(—p)]" (5)



4. Approaches and methods of solution

The difficulties connected with the complex action manifest themselves

as a number of problems, most notorious:

The sign problem: the results depend directly or indirectly
(dependig on the approach) on strong cancellations between
contributions of opposite sign both in the values of the the
observables and, more noxious, in the partition function (which is
the normalization of the measure).

The overlap problem: how relevant is the performed importance
sampling for the actual problem?

The stability problem: how stable are the calculated expectation
values under variation in the parameters of the simulation?

The convergence and uniqueness problem of the procedure by
which the final results for the averages are obtained.
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Some approaches:

- Map the problem onto a real effective action problem using the
symmetries of the path integral. (Example: Alford et al 2001 for
the Potts model.)

A nice method, but model bound. The effective action is typically
non local, the method depends on the possibility of identifying
classes of configurations, defining clusters, etc. Once this is
achieved there only remain the usual problems of statistical errors,
slowing down, etc.

- Use Canonical Ensemble formulation and/or functional
transforms to redefine the problem in terms of a number of
simpler partition functions. (Karsch, Azcoiti, De Forcrand, ...).
The method may acknowledge the sign problem and the
convergence problem concerning the decomposition and
resummation.
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- Perform simulations at values of the parameters for which the
action is real and continue by analytic expansion to the complex
action. (De Forcrand, Lombardo, Myamura et al, Ejiri et al)
The method can be affected by stability questions concerning the
extrapolation from data with statistical errors, and by convergence
and uniqueness problems leading to systematic errors.

- Perform simulations with a different action and obtain the results
by reweighting.
The method suffers of the sign and overlap problems.

- Use a complex stochastic process such as the complex Langevin
Equation controlled by the actual action.
The method is subject to the convergence and uniqueness problem.

Notice that all approaches imply at some moment a numerical
simulation, redefined such as to be applicable, and/or supplemented by
other procedures which may amplify also the usual uncertainties.
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5. A reweightying study of the HDM model.
(De Pietri, Feo, Seiler, 10S5)

The QCD grand canonical partition function (Wilson fermions):

Z = /DUe_S, S = Synu — logdet W (6)

3
W = 1- KJZ (F+2Ux7@TZ -+ F_@U;,ZT_@)
1=1

— Ry (GMF+4U3;,4T4 -+ e_”F_4U{i74T_4) (7)

Here T are lattice translations, I'+, = 1 &=+, and & is the hopping
parameter ~ 1/M. ~ is a (bare) anisotropy parameter. For non-zero p
det W and S are complex. The temperature is introduced as

Y
T=-_ 3
oT =+ )
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Hoping parameter expansion for a systematic approximation:

Det W = eXp(Tran) )
= exp _S‘YY HDAgCZ Trp.cLe,
= 1{61}3 1
— H H DetD,c (1 — (HA)lng[’Cz)
I=1 {C,}

with C; a closed, non-self-repeating path, A the links on C; and

['Cz — (H F)\UA> y gc; = (eeiNT'uf>T or 1 (10)

with non-trivial g¢, for loops winding 7 times in the +4 direction with
periodic(antiperiodic) b.c. (¢ = +1(—1)) and k) = k or Ky for
spatial /temporal links.
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Large mass, large chemical potential limit (Bender et al 1992):

k— 0, u—o00, ke =(: fixed (11)

O-th order:

ZR(CAUY) =exp |-2) ) (C)” Tr(Pz)°

@y s=1 7

=[] Det (1 — eCPz)?, C= (20", (12)
{z}
(Pz: Polyakov loops).
NB: If one wants to ensure the symmetry det W () = [det W (—pu)|*
one can take also non-dominant terms in the determinant, thus

K 2 K 2
2J) =TT det (1 - chetPz) det (1 - ehe™ #PZ1)", h=(20)""
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2-nd order:

232 (5, 1, {U}) = exp { —2

X Tr

(Pz

)3_1_/{2 Z (EC)s(r—l)(

T7Q7i7t7t,

T,q
Z,i,t,t

=z, vy [ Det (1—(60)%2

:E’?r?q?i?t?t/

)S

r,q

/

Z,i,t,t

)2. (13)

Use temporal gauge for easy bookkeeping. The model is defined in
terms of the “Boltzmann factor” (Aarts et al 2002)

B =eSvm z2
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T =1/N;ay

Figure 2: Periodic lattice, loops, temporal gauge.
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Analytic results:

- strong coupling, hopping parameter, leading behaviour of the
Polyakov loop and its adjoint:

(P) ~ (1+§ﬂm2<z\@—1)),
Py~ Se (1 g, )

- anisotropic mean field (using v to define the temperature).

18



0.3

1/3 Re.P --M-+ 2.4 I
1/3 Re.P: =]
1/3Re.P
0.25 | 1/3 Re.P* ~------ |
2.2
02 | | |
L]
1.8 |
0.15 | ; .
] 1.6 |
01t |
. 14| |
0.05 |- o T |
1 1 1 1 1 1 1 ] 1 1 | . ) I I
0.75 0.8 0.85 0.9 0.95 1 1.05 11 115 -1 -0.5 0 0.5 1 15 5 55 3
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Reweighting analysis (3 flavours, 6% lattices, ~ 107 sweeps per point):

split a positive definite Boltzman factor By from B and define the
weights w and the expectation values

<w0>0
B = B()w, O) = 14
0) =22 (14)
with
By = H e%ReTl’Plaq > ]i[GQC’R@T"[73:34‘/432 D i bt P;:;t,t/} 7
Plagq T
7 HJQ . / O’.l

w o= H€_2CReTr[P‘”+ it met’t’} X ZI[:Q]. (15)

We measure Polyakov loops, baryonic density, their susceptibilities, etc.
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Figure 5: Landscape of the Polyakov loop susceptibility over the 8 — u
plane (increasing 3 means larger temperature). The color scale is based

on log;o(xp)-
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Further insight can be gained from the distribution of the values of the
Polyakov loop in different phases:

- true histogram (dependent on the choice of By):

Ha(z,y) = <@M (Re(wpf)) Oa, (Im(wpf)»o (16)

(w)o (w)o

with O () =1 if |t — s| < A/2, 0 otherwise.

- complex “distribution” (independent on the choice of By):
Ta(z,y) = (Ona,z(RePg) On y(IMmPs)) (17)
and we have:

(P)~ Y (z+iy)Ta(z,y), (18)

Also, the weight distribution changes.
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Figure 9: Imaginary part of the Polyakov loop ‘distribution’ TA (x,y) of
eq. (17) vs. p at B = 5.65 fixed.
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6. Stochastic processes for complex action.

a) General aspects.
b) Simple examples and what can we learn from them.
c) Application to Minkowski QFT problems.

d) Application to chemical potential problems.
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Stochastic processes in Quantum Field Theory

Procedure: Realize a sampling of field configurations by defining a

supplementary (noisy) dynamics in a 5-th “time”.

Basic example: Parisi Wu stochastic quantization in Euclidean QFT

- proofs of equivalence with path integral formulation, proofs of

convergence, etc
rely on the definition of a probability distribution over the space of

field configurations via an associated Fokker-Planck equation
- can define a “perturbation theory” without gauge fixing
- for numerical studies: comparable to MC

(see also Damgaard and Hueffel, Namiki, ...)
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Essential feature: uses a drift force to define the process (the 5-th time
dynamics)
— versatility

- can be directly related to expectation values

- can be directly defined from the set up of the problem without

needing an action or a probability interpretation for the path
integral

This may be of interest in cases where other approaches (e.g., MC) do
not work.

In the following: point of view of numerical simulations.
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Usual realizations: Langevin Equation and Random Walk.

Here in discretized form, lto calculus, ¥: 5-th “time”, 0¥ : “time” step;
for a field (x) (random variable), K|p]: drift force,

Langevin equation:

op(z;9) = @(z;0 + 60) — p(z;9) = K|p(x;9)] 609 + n(x; 9)
(n(z;9)) =0, ((z;9)n(z";9")) =200 64,00 69,9/

Random Walk:
0p(z;9) = fw, with pbb: (1 £ jw K[p(z;9)]), w =Vl
NB: since n, w o v 01 we need also second derivatives:

0 flo(V] = Oy flp(9)] dp(a; ) + 302 f ()] [¢p(z; 9)]?
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Relation to path integral and MC

If the drift is the gradient of a real action, bounded from below
then there is a probability density P((, 1) satisfying an associated
Fokker-Planck Equation in the limit 099 — O:

Oy P(p, V) =0, (0, — K) P(p,?V), K=—-0,5
and we have:

P(p,9) = coe 5@ + 37 cuppe Bt = Puy(p) = coe 5, (9 — oo)
E,, >0

with E,, the eigenvalues of the Fokker—Planck Hamiltonian:

1 1
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- expectation values (f(¢)) can be calculated as averages over the
noise, equivalently as 1/ averages:

1 r®
W)= | 49160 = ) +00/V8).

- the convergence is controlled by the properties of the FP
Hamiltonian,

- in practice 6 # 0: pus(@) has O(619) corrections (controllable).
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Figure 11: Plaquette averages by LE and RW compared with MC
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Beyond Euclidean QFT

Developments based on the versatility of the method:
e redefining the drift force,
e changing the action,

e redefining the noise (e.g., nonlinear processes: “active brownian
motion™ ),

Very much used in modeling (statistical physics, complex systems, etc.)

In QM and QFT: open systems, continuous localization, special
simulation problems.

Interesting if Euclidean formulation is not possible or ambiguous.

In the following: Complex action.
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Complex action

- reformulation of the stochastic quantization for real time evolution
- accounting for complex terms in the action (non-zero density)

- in both cases: (more or less formal) proofs of convergence and
equivalence to the path integral formulation under certain
conditions (many papers since the 1980°s: Paris, ... Hiffel and
Rumpf, Okamoto, etc)
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The complex process

Since the drift is complex the process automatically provides an
iImaginary part for the variable. Hence we must define the process in
the complex plane, i.e., we must complexify each degree of freedom.

LE with complex drift K(z) for a complex variable
z(¥) = x(¥) + i y(v)) amounts to two related real LE with independent
noise terms

0z(0) = K(z,7) 519+77(19), n=Nrnr+1N1nr (19)
ie. : ox(¥) = Re K(z,9) 09 + Nrngr(v) (20)
oy(9) = mK(z v) 6v + Ny np(9) (21)

(nr) = (nr) =0, {(nz)=(nf) =269, (nrnr) =0, Ng—N;=1

The noise normalizations Ng, N are defined such as to reproduce the
correct quantum fluctuations, ortherwise they are arbitrary.
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For the two real variables we can also define a corresponding pair of

real RW processes

5513(79) — :I:wx, Px,:l:

N —

(1 52=ReK(=9)  (22)

(1 5 Im K (2. )) (23)

— \/2NR0Y, w, = /2N59 (24)

where Py are the transition probabilities and we have defined the steps
such as to have the same 09 in all processes, to ensure the correct

5y(19) — iwya Pya

N

correlation.
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We can define a FPE for a complex “distribution” P(z), z : complex

Dy P(2,9) = 9, (8, — K) P(2,9), K = —0.8

Formally this has as asymptotic solution e™*.

Alternatively we can define a genuine probability distribution p(x,y,t)
for the real variables z,y from the system (20,21) or (22,23). Using,
e.g., the master equation with the transition probabilities (22,23) we
can write for it a real FPE:

Oyp(r,y,V) = [0z (NR Or — ReK(2)) 4 0y (N1 0y — ImK(2))] p(z,y,7)

For analytic f(z) we have

/dwdyp(fvay’ﬁ)f(wﬂy) = /dfvP(fE,ﬁ)f(fv) (25)

The relation to convergence is more subtle.
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Simple models

One plaquette with complete gauge fixing — one link integrals.
(Berges, Sexty, Seiler, Aarts, 105)

U
A >A | >|
I I
P ! P |
| |
| |
| |
o b---- - &
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One link U(1) model

. ™ d
7 = /dU e PYMTIPT et TV :/ 2_33 e o), (26)
g 2T
Symu = —g (U+U_1) = —fBcosx, U=¢"
det W = 14 — e*U +e U] =1+ rcos(z —ip).

2

Observables (exact expressions in terms of Bessel functions)

(U) = (@), (U™1) = (e7*®) (Polyakov loop and its inverse)

(cosa) = F5InZ (plaquette), (n) = 5 In Z =  Faeid. )

Notice that in complexifying the variable * — z = x 4+ 7y we must use
U1 instead of U* everywhere. p is a “reweighting” parameter.

For Kk =0, B :1tmaginary we moke Minkowski quantization
For 3 : real and k, u # 0 we moke the chemical potential (HDM)
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“Minkowski” case

The Langevin process can be made to converge at p # 0 and using
reweighting to calculate the averages also at p = 0. General criteria
obtained from the analysis of the classical flow (Berges, Sexty).

The complex FPE for the complex “distribution” P,(x)

Py(z,9) = (07 —i 0, (p+ B sinz)) Py(z,9) (27)
can be easily solved for the Fourier modes. It shows good convergence
(depending on p) and the results agree with the averages from the LE
process (Aarts, Seiler, 10S). The analysis of the spectrum of the FPE

shows that in this region the eigenvalues are positive. Here we used
real noise (Ngp =1, Ny = 0).
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Figure 12: P,(k,?¥) (Re,Im) forp=0and 3 =1, k=1,2,3,4 from
the complex FPE.
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Im rho(x,t), beta=1.8, p=0, t=
t=2.

-1 Re rho(x,t), beta=1.8, p=0,t= 0 —+— B
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Figure 13: FPy(x,v¥) (Re,Im), p = 0, 8 = 1.8 with N = 100 x-

discretization, 69 = 1079, for t = 0,2.5,5,10 compared with exact
S

measure e~ * (discretized).

45



Figure 14: Lowest eigenvalues of the FP Hamiltonian for imaginary 3.

This also illustrates the role of p.
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“*Chemical potential” (symmetric HDM)

Here we take p = 0. The Langevin process converges everywhere
(Aarts, Seiler, 10S5).

The complex FPE for the modes of the complex “distribution” P(x)
P(n,¥) = —n?P(n,¥) —ncy P(n+1,0) + nc_P(n —1,9)  (28)

with cL = % (8 4 keTH) can be easily solved and shows good
convergence toward exp(—.S). The results agree with the averages
from the LE process. This behaviour is supported by the analysis of
the spectrum of the FPE Hamiltonian and the fixed point structure of

the classical flow.

Here we used again real noise (Ng =1, N; = 0).
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U(1), Polyakov loop and its inverse vs
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U(1), density vs u, plaquette vs pu?
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U(1), Lowest eigenvalues of the FP Hamiltonian (6 =1, k = 0.5)
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U(1), Classical flow of the drift (below: =1, Kk = 0.5 and © = 0.1
and 2)
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For this problem we also have written down the RW process. In this

case we cannot take purely real noise. In the following we use
N =1.01410.01.

The agreement with the LE process is very good.

We can also solve the real FPE (for the genuine probability distribution
p(x,y,v)). Here we took N = 1.1 +1i0.1.
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U(1), Plaquette (vs B,u=1and vs u, 6 =2, k =0.2)
RW compared with LE and exact.

1 1
‘ ‘ ‘ ‘ ‘ ‘ he<U> Vs mu, ‘kappa:O.Z, be‘ta=2 —
LE, 1.01/0.01 noise ~ *
Re<U> vs beta, kappa=0.2, mu=1 —— RW, 1.01/0.01 noise
LE 1.00/0.00 noise =
LE, 1.01/0.01 noise o
08 F RW, 1.01/0.01 noise O - B 09 |
/}/
0.6 - 0.8
04 g 07 TR
02| . 06 | T~
~_
0 0.5
0 1 2 3 4 5 0.5 0 0.5 1 15 2 25 3
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U(1), Real probability distribution (initial and asymptotic).

'plot_fprchdxy1_0' matrix

'plot_fprchdxyl_12'" matrix

014
012

01
0.08 -
0.06 -
0.04
0.02
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One link SU(3) model

Here U € SU(3) (€ SL(3,C') after complexification),

Sy = —g (TFU -+ TI’U_l) : (29)
det W = det (14 ke’U)det (14 ke *U ") (30)

All observables are easily computed exactly using the reduced Haar
measure. The LE proceeds in si(3,C') for the 8 (now complex)
components of the potential:

U — U = ea(eKatvena) 1y (31)
P |
Ka — _Da ) Da — taAa
. D)= 0]
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Re<P>

SU(3) Polyakov loop and its inverse vs

0.5 0.5
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Phase (det W (u)/det W(—pu)) for k = 0.5 and various 3 vs u, and
TrUTU/S vs Langevin step for u=1,2,3,4at 8 =1,k = 0.5
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Pl %y I aFal yile
! A b ¥ Vo b, PRGN \};:'.rj vi
i o % 1 AN XY e ARN s\ {0\
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U

Langevin step
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What can we learn from the simple models?
- both LE and RW can be applied

- there are good criteria for convergence (classical flow, FPE spectrum,
etc)

- there seems to be no tuning problem, rather we must avoid some
special conditions (such as Ny = 0 for RW and real FPE) or “repair”
them (e.g., use p > 0 to force positive eigenvalues in the complex

FPE).

- similar results obtain for SU(3) (with complexification SL(3,C)),
therefore they are not model dependent (for SU(2) see Berges and
Sexty)

- what it is needed is to find equivalent criteria which can be applied to
lattice problems
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Minkowski QFT
Some recent lattice applications (Berges, Borsanyi, Sexty, 10S):
- for scalar field and SU(2) gauge theory,
- finite temperature and non-equilibrium evolution,
- convergence and uniqueness tests,

- relation with the Schwinger-Dyson equations
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Scalar field
$=ap, m=am,Xx=x/a,t=tla;, v=a/a, O =1/a% e =9/a?
i =d3ad0n = \/e/ya*n, (§(&,0)7(& D))y = 20546 5
p(#:0+€) = p(#;0) + /ey n(#;0)
y (DM@; 9) + m20(2:9) + Ap(: @)3) .
0,¢(8:9) = 72 (92 +0;9) + @(@ — é0;9) — () )

- Z ($( +&530) + (3 — e5:0) — 25(35))

The fields are the complex extensions of the original ones and all
observables analytic extensions of the original observables.

One gives initial conditions in physical time ¢, e.g. p(x,0;9) = po(x),
o(x,1;9) = p(xz,0;9) and a starting configuration ¢(x,t;0).
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' Corr., m:lz.646—0.0:|:i, eps:e—S,I typd=3, n:IO, theta:OI —a—

theta= 3
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> theta= 13
N theta= 19
theta= 25
c0s(2.646*(x-1)/4.)
c0s(2.646*(x-1.5)/4.)

10 12 14 16 18 20

Figure 15: 3+1 dim free field, 123.20,v = 4, M = 2.63 — 40.01, A = 0.
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Correlations (classical, quantum), energy and Im < ©? >.
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Figure 16: 3+1 dim , ¢* theory, 83.20,M = 0,A =9,y = 4. Large ¢
correlations from different starting configurations, ¥ dependence, corre-

lations from different start configuration at various .
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QCD with non-zero density

HDM approximation

The structure is similar to the one link SU(3) model, replacing the

links by plaquettes in S, etc.

Preliminary, for illustration: the real part of the Polyakov loop and its
inverse on a 4% lattice at 3 = 5.6, k = 0.12 and 3 flavours vs i, and

TrUTU/3 vs 6 at u = 0.5 and 0.9.

015 ‘ I

o
[
I

Polyakov loop
13TV U
- I 4 4

0.05

0 L 1 I | ) | ' | L
1 0 10000 20000 30000 40000 50000

M Langevin iteration
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7. General observations

. Run-away trajectories: can be systematically dealt with by
adaptive step size. General requirement: Use high precision since

accumulating rounding off errors are very dangereous!
. Systematic discretization errors: not relevant at the step size used.

. Convergence. This is the most urgent problem:

- For the Minkowski problem one observes some times
non-uniqueness of the solution: this appears related to solution
multiplicities of the Dyson-Schwinger equations. This may
provide a way of approaching this problem.

- The chemical potential problem appears better behaved, in
particular the convergence does not seems to deteriorate with
increasing p (at variance with the MC reweighting method).
General tests are, however, missing.
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- One can also try to better control the method by redesigning
the process. For instance:
- Kernel controlled LE (to generate positive real parts in the
spectrum of the FP Hamiltonian) without changing the
averages,
- reweighting (changing the drift and recalculating the
averages),
- there does not seem to be a tuning problem, but rather
definitely wrong choices of parameters or the possibility of

systematic improvement.

- We need to design tests as powerfull as the fixed point
structure of the classical flow, or the spectrum of the FPE, but
which are operational for a lattice problem (many d.o.f.).

65



B=1.0 q= -3.0 q= -2.0 q= -1.0 q= 1.0 q= 2.0
p Re Im Re Im Re Im Re Im Re Im
-3.0 -.227E-04 0.114E-02 | -.129E-01 0.298E-03 | -.176E-02  -.127 -.108 5.87 -22.5 -.997
exact -.395E-15 0.107E-02 | -.128E-01 0.602E-14 | 0.966E-15 -.127 -.661E-14  5.87 -22.5 0.631E
-2.0 0.924E-04  0.232E-02 | -.216E-01 0.858E-03 | -.343E-02 -.170 -.109 3.83 -6.67 -.629
exact 0.310E-15  0.217E-02 | -.216E-01 -.628E-15 | -.135E-15 -.170 -.215E-14  3.83 -6.66 -.341E
-1.0 0.289E-03  0.721E-02 | -.450E-01 0.273E-02 | -.725E-02  -.259 -373E-01 1.74 1.21 -.183
exact 0.107E-16  0.563E-02 | -.445E-01 -.231E-15 | 0.339E-15 -.261 0.410E-15 1.74 1.00 -.193E
0.0 20.7 13.9 1.06 -.247 0.146E-01 0.168E-03 | 0.639E-01 -.350E-03 | 0.972 -.445
exact -.372E-16 0.256E-01 | -.150 -.720E-16 | 0.149E-15 -.575 -.138E-15  -.575 -.150 0.363E
1.0 -5.78 -11.1 1.21 0.193 0.435E-01 1.74 0.720E-02  -.257 -.439E-01 -.285E
exact 0.109E-15  -.261 1.00 0.188E-15 | -.309E-15 1.74 -.593E-15  -.261 -.445E-01  0.994tl
2.0 -.149E+04 -66.6 -6.95 0.382 0.116 3.83 0.350E-02 -.169 -.213E-01  -.857E
exact -.280E-14 3.83 -6.66 -.135E-14 | 0.952E-15 3.83 0.185E-15 -.170 -.216E-01  0.355E
3.0 -4.42 -37.2 -22.5 0.974 0.101 5.87 0.183E-02 -.126 -.128E-01  -.296E
exact -.148E-12 -39.1 -22.5 0.981E-13 | 0.336E-13 5.87 -.182E-15  -.127 -.128E-01  0.237
4.0 -8.26 -178. -46.5 1.33 0.101 7.90 0.112E-02 -.101 -.862E-02 -.112E
exact -.606E-11 -178. -46.4 0.163E-11 | 0.292E-12 7.90 -.402E-13  -.101 -.845E-02  0.196
5.0 -14.4 -463. -78.5 1.72 0.100 9.91 0.764E-03  -.837E-01 | -.608E-02 -.410E
exact 0.265E-09  -460. -78.3 -.451E-10 | -.569E-11  9.92 -.649E-14  -.838E-01 | -.602E-02 -.208E
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