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Figure 1: Random Walk.
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1. Complex action in Quantum Field Theory

Starting from a real action problem and continuing the parameters

in the complex plane

One must take into account the analyticity properties of the partition

function and expectation values. For simple models these can be found

out, which allows to observe non-trivial convergence properties, etc.

These can be related to phase transitions, to solution multiplicity of

Schwinger Dyson equations, to the behaviour of complex Langevin

simulation, etc. (many papers since the 1980’s: C. Bender,

Gausterer, Guralnik, Salcedo, Namiki, Schültke, Nakazano, ... - )
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Starting from special problems with complex action

- real time (Minkowski) path integral,

- non-zero chemical potential in euclidean LGT

- θ− vacua

- ...
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2. Minkowski path integral

- equilibrium parameters (masses, decay rates) can be obtained from

euclidean simulations (lattice theory)

- time evolution, especially non-equilibrium field theory: perturbative

methodes, classical dynamics, etc

(Berges, Smit, Bödeker, Garcia-Perez, ...)
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Nonequilibrium dynamics, generating functional:

Z[J ; ρ] = Tr
{

ρ TC ei
R

C
J(x)Φ(x)

}

=

∫

dϕ1dϕ2 ρ(ϕ1, ϕ2)

ϕ2
∫

ϕ1

D′ϕei
R

C
(L(x)+J(x)ϕ(x)). (1)

with initial-time density matrix ρ(ϕ1, ϕ2) and C a closed contour

extending along the real t axis.

Expectation of a real-time observable:

〈A(ϕ)〉 =

∫

dϕ1dϕ2 ρ(ϕ1, ϕ2)

∫ ϕ−(0)=ϕ2

ϕ+(0)=ϕ1

D′ϕ−D′ϕ+eiS[ϕ+]−iS[ϕ−]A(ϕ

=

∫

Dϕ−Dϕ+eiSρ[ϕ+,ϕ−]A(ϕ+) .
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3. Non-zero chemical potential.

- QCD

- Heavy Dense Matter model

- Various approximations using the fact that the chemical potential

selects the Polyakov loops in the fermionic determinant: Polyakov

loop models, Potts model, etc(Green and Karsch 1984, Karsch

and Wilde 1985, Karsch and Stickan 2000, Alford et al,

2001,...)

- Relativistic Bose gas (Aarts 2008)

- ...
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QCD grand canonical partition function (Wilson fermions):

Z =

∫

DU e−S , S = SY M − log det W (3)

W = 1 − κ
3
∑

i=1

(

Γ+iUx,iTi + Γ−iU
†
x,iT−i

)

−κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
†
x,4T−4

)

(4)

Here T are lattice translations, Γ±µ = 1 ± γµ, and κ is the hopping

parameter. For non-zero µ detW and S are complex and direct MC is

not possible. We still have

detW (µ) = [det W (−µ)]∗ (5)

9



4. Approaches and methods of solution

The difficulties connected with the complex action manifest themselves

as a number of problems, most notorious:

- The sign problem: the results depend directly or indirectly

(dependig on the approach) on strong cancellations between

contributions of opposite sign both in the values of the the

observables and, more noxious, in the partition function (which is

the normalization of the measure).

- The overlap problem: how relevant is the performed importance

sampling for the actual problem?

- The stability problem: how stable are the calculated expectation

values under variation in the parameters of the simulation?

- The convergence and uniqueness problem of the procedure by

which the final results for the averages are obtained.
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Some approaches:

- Map the problem onto a real effective action problem using the

symmetries of the path integral. (Example: Alford et al 2001 for

the Potts model.)

A nice method, but model bound. The effective action is typically

non local, the method depends on the possibility of identifying

classes of configurations, defining clusters, etc. Once this is

achieved there only remain the usual problems of statistical errors,

slowing down, etc.

- Use Canonical Ensemble formulation and/or functional

transforms to redefine the problem in terms of a number of

simpler partition functions. (Karsch, Azcoiti, De Forcrand, ...).

The method may acknowledge the sign problem and the

convergence problem concerning the decomposition and

resummation.
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- Perform simulations at values of the parameters for which the

action is real and continue by analytic expansion to the complex

action. (De Forcrand, Lombardo, Myamura et al, Ejiri et al)

The method can be affected by stability questions concerning the

extrapolation from data with statistical errors, and by convergence

and uniqueness problems leading to systematic errors.

- Perform simulations with a different action and obtain the results

by reweighting.

The method suffers of the sign and overlap problems.

- Use a complex stochastic process such as the complex Langevin

Equation controlled by the actual action.

The method is subject to the convergence and uniqueness problem.

Notice that all approaches imply at some moment a numerical

simulation, redefined such as to be applicable, and/or supplemented by

other procedures which may amplify also the usual uncertainties.
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5. A reweightying study of the HDM model.

(De Pietri, Feo, Seiler, IOS)

The QCD grand canonical partition function (Wilson fermions):

Z =

∫

DU e−S , S = SY M − log detW (6)

W = 1 − κ

3
∑

i=1

(

Γ+iUx,iTi + Γ−iU
†
x,iT−i

)

−κγ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
†
x,4T−4

)

(7)

Here T are lattice translations, Γ±µ = 1 ± γµ, and κ is the hopping

parameter ∼ 1/M . γ is a (bare) anisotropy parameter. For non-zero µ

detW and S are complex. The temperature is introduced as

aT =
γ

Nτ

(8)
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Hoping parameter expansion for a systematic approximation:

DetW = exp(Tr lnW ) (9)

= exp



−
∞
∑

l=1

∑

{Cl}

∞
∑

s=1

(κl
λgCl

)
s

s
TrD,CLs

Cl





=
∞
∏

l=1

∏

{Cl}
Det D,C

(

1 − (κλ)lgCl
LCl

)

with Cl a closed, non-self-repeating path, λ the links on Cl and

LCl
=

(

∏

λ∈Cl

ΓλUλ

)s

, gCl
=
(

ǫ e±Nτ µf
)r

or 1 (10)

with non-trivial gCl
for loops winding r times in the ±4 direction with

periodic(antiperiodic) b.c. (ǫ = +1(−1)) and κλ = κ or κ γ for

spatial/temporal links.
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Large mass, large chemical potential limit (Bender et al 1992):

κ → 0, µ → ∞, κ eµ ≡ ζ : fixed (11)

0-th order:

Z [0]
F (C, {U}) = exp



−2
∑

{~x}

∞
∑

s=1

(ǫC)s

s
Tr(P~x)s





=
∏

{~x}
Det (1I − ǫCP~x)

2
, C = (2 ζ)Nτ , (12)

(P~x: Polyakov loops).

NB: If one wants to ensure the symmetry detW (µ) = [detW (−µ)]∗

one can take also non-dominant terms in the determinant, thus

Z [0]
F =

∏

~x

det
(

1 − ǫhe
µ
T P~x

)2

det
(

1 − ǫhe−
µ
T P−1

~x

)2

, h = (2κ)Nτ
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2-nd order:

Z [2]
F (κ, µ, {U}) = exp







−2
∑

{~x}

∞
∑

s=1

(ǫC)
s

s
×

× Tr



(P~x)s + κ2
∑

r,q,i,t,t′

(ǫC)s(r−1)(Pr,q
~x,i,t,t′)

s











= Z [0]
F (C, {U})

∏

~x,r,q,i,t,t′

Det
(

1I − (ǫC)r κ2 Pr,q
~x,i,t,t′

)2

. (13)

Use temporal gauge for easy bookkeeping. The model is defined in

terms of the “Boltzmann factor” (Aarts et al 2002)

B = e−SY M Z [2]
F .
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Figure 2: Periodic lattice, loops, temporal gauge.
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Analytic results:

- strong coupling, hopping parameter, leading behaviour of the

Polyakov loop and its adjoint:

〈P 〉 ∼ C2

(

1 +
4

9
βκ2(Nτ − 1)

)

,

〈P ∗〉 ∼ 2

3
C

(

1 +
1

3
βκ2(Nτ − 1)

)

- anisotropic mean field (using γ to define the temperature).
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Figure 3: Left: Comparison with strong coupling, β = 5.5, 64 lattice.

Symbols are the reweighting results. Right: Mean field phase diagram

(abscissa µ, ordinate γ = Nτ aT ).

19



Reweighting analysis (3 flavours, 64 lattices, ∼ 107 sweeps per point):

split a positive definite Boltzman factor B0 from B and define the

weights w and the expectation values

B = B0w , 〈O〉 =
〈wO〉0
〈w〉0

(14)

with

B0 ≡
∏

Plaq

e
β
3

ReTrPlaq ×
∏

~x

e
2CReTr

h

P~x+κ2
P

i,t,t′ P
0,1

~x,i,t,t′

i

,

w ≡
∏

~x

e
−2 C ReTr

h

P~x+κ2
P

i,t,t′ P
0,1

~x,i,t,t′

i

×Z [2]
F . (15)

We measure Polyakov loops, baryonic density, their susceptibilities, etc.
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= 6, n  =3τN f

µphys = 6µT/T/Tc c

(µ  phys   /T = )
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Figure 6: Tentative phase diagram.
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Further insight can be gained from the distribution of the values of the

Polyakov loop in different phases:

- true histogram (dependent on the choice of B0):

H∆(x, y) =

〈

Θ∆,x

(

Re(w P~x)

〈w〉0

)

Θ∆,y

(

Im(w P~x)

〈w〉0

)〉

0

(16)

with Θ∆,s(t) = 1 if |t − s| ≤ ∆/2, 0 otherwise.

- complex “distribution” (independent on the choice of B0):

T∆(x, y) = 〈Θ∆,x(ReP~x)Θ∆,y(ImP~x)〉 , (17)

and we have:

〈P 〉 ≈
∑

x,y

(x + iy)T∆(x, y) , (18)

Also, the weight distribution changes.
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β = 5.65.
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Figure 8: Real part of the Polyakov loop ‘distribution’ T∆(x, y) of eq.

(17) vs. µ at β = 5.65 fixed.
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Figure 9: Imaginary part of the Polyakov loop ‘distribution’ T∆(x, y) of

eq. (17) vs. µ at β = 5.65 fixed.
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Figure 10: Weight factor w ‘distribution’ vs. µ at β = 5.75 fixed.
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6. Stochastic processes for complex action.

a) General aspects.

b) Simple examples and what can we learn from them.

c) Application to Minkowski QFT problems.

d) Application to chemical potential problems.
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Stochastic processes in Quantum Field Theory

Procedure: Realize a sampling of field configurations by defining a

supplementary (noisy) dynamics in a 5-th “time”.

Basic example: Parisi Wu stochastic quantization in Euclidean QFT

- proofs of equivalence with path integral formulation, proofs of

convergence, etc

rely on the definition of a probability distribution over the space of

field configurations via an associated Fokker-Planck equation

- can define a “perturbation theory” without gauge fixing

- for numerical studies: comparable to MC

(see also Damgaard and Hueffel, Namiki, ...)
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Essential feature: uses a drift force to define the process (the 5-th time

dynamics)

−→ versatility

- can be directly related to expectation values

- can be directly defined from the set up of the problem without

needing an action or a probability interpretation for the path

integral

This may be of interest in cases where other approaches (e.g., MC) do

not work.

In the following: point of view of numerical simulations.
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Usual realizations: Langevin Equation and Random Walk.

Here in discretized form, Ito calculus, ϑ: 5-th “time”, δϑ : “time” step;

for a field ϕ(x) (random variable), K[ϕ]: drift force,

Langevin equation:

δϕ(x;ϑ) ≡ ϕ(x;ϑ + δϑ) − ϕ(x;ϑ) = K[ϕ(x;ϑ)] δϑ + η(x;ϑ)

〈η(x;ϑ)〉 = 0, 〈η(x;ϑ)η(x′;ϑ′)〉 = 2 δϑ δx,x′ δϑ,ϑ′

Random Walk:

δϕ(x;ϑ) = ±ω, with pbb : 1
2 (1 ± 1

2ω K[ϕ(x;ϑ)]) , ω =
√

δϑ

NB: since η, ω ∝
√

δϑ we need also second derivatives:

δf [ϕ(ϑ] = ∂ϕf [ϕ(ϑ)] δϕ(x;ϑ) + 1
2∂2

ϕf [ϕ(ϑ)] [δϕ(x;ϑ)]2

32



Relation to path integral and MC

If the drift is the gradient of a real action, bounded from below

then there is a probability density P (ϕ, ϑ) satisfying an associated

Fokker-Planck Equation in the limit δϑ −→ 0:

∂ϑP (ϕ, ϑ) = ∂ϕ (∂ϕ − K) P (ϕ, ϑ), K = −∂ϕS

and we have:

P (ϕ, ϑ) = c0e
−S(x) +

∑

En>0

cnφne−Ent → Pas(ϕ) = c0e
−S[ϕ], (ϑ → ∞)

with En the eigenvalues of the Fokker–Planck Hamiltonian:

HFP = −∂2
ϕ +

1

4
(∂ϕS)2 − 1

2
(∂2

ϕS)
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- expectation values 〈f(ϕ)〉 can be calculated as averages over the

noise, equivalently as ϑ averages:

f(ϕ) =
1

Θ

∫ Θ

0

dϑ f(ϕ(ϑ)) = 〈f(ϕ)〉 + O(1/
√

Θ) ,

- the convergence is controlled by the properties of the FP

Hamiltonian,

- in practice δϑ 6= 0: ρas(ϕ) has O(δϑ) corrections (controllable).
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Beyond Euclidean QFT

Developments based on the versatility of the method:

• redefining the drift force,

• changing the action,

• redefining the noise (e.g., nonlinear processes: “active brownian

motion”),

• . . .

Very much used in modeling (statistical physics, complex systems, etc.)

In QM and QFT: open systems, continuous localization, special

simulation problems.

Interesting if Euclidean formulation is not possible or ambiguous.

In the following: Complex action.
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Complex action

- reformulation of the stochastic quantization for real time evolution

- accounting for complex terms in the action (non-zero density)

- in both cases: (more or less formal) proofs of convergence and

equivalence to the path integral formulation under certain

conditions (many papers since the 1980’s: Paris, ... Hüffel and

Rumpf, Okamoto, etc)

37



The complex process

Since the drift is complex the process automatically provides an

imaginary part for the variable. Hence we must define the process in

the complex plane, i.e., we must complexify each degree of freedom.

LE with complex drift K(z) for a complex variable

z(ϑ) = x(ϑ) + i y(ϑ) amounts to two related real LE with independent

noise terms

δz(ϑ) = K(z, ϑ) δϑ + η(ϑ) , η = NR ηR + iNI ηI (19)

i.e. : δx(ϑ) = ReK(z, ϑ) δϑ + NR ηR(ϑ) (20)

δy(ϑ) = ImK(z, ϑ) δϑ + NI ηI(ϑ) (21)

〈ηR〉 = 〈ηI〉 = 0 , 〈η2
R〉 = 〈η2

I 〉 = 2 δϑ , 〈ηRηI〉 = 0 , NR − NI = 1

The noise normalizations NR, NI are defined such as to reproduce the

correct quantum fluctuations, ortherwise they are arbitrary.
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For the two real variables we can also define a corresponding pair of

real RW processes

δx(ϑ) = ±ωx , Px,± = 1
2 (1 ± ωx

2NR

ReK(z, ϑ)) (22)

δy(ϑ) = ±ωy , Py,± = 1
2 (1 ± ωy

2NI

ImK(z, ϑ)) (23)

ωx =
√

2NRδϑ , ωy =
√

2NIδϑ (24)

where P± are the transition probabilities and we have defined the steps

such as to have the same δϑ in all processes, to ensure the correct

correlation.
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We can define a FPE for a complex “distribution” P (z), z : complex

∂ϑP (z, ϑ) = ∂z (∂z − K) P (z, ϑ), K = −∂zS

Formally this has as asymptotic solution e−S .

Alternatively we can define a genuine probability distribution ρ(x, y, t)

for the real variables x, y from the system (20,21) or (22,23). Using,

e.g., the master equation with the transition probabilities (22,23) we

can write for it a real FPE:

∂ϑρ(x, y, ϑ) = [∂x (NR ∂x − ReK(z)) + ∂y (NI ∂y − ImK(z))] ρ(x, y, ϑ),

For analytic f(z) we have
∫

dx dy ρ(x, y, ϑ) f(x + iy) =

∫

dxP (x, ϑ) f(x) (25)

The relation to convergence is more subtle.
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Simple models

One plaquette with complete gauge fixing −→ one link integrals.

(Berges, Sexty, Seiler, Aarts, IOS)

U

PP
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One link U(1) model

Z =

∫

dU e−SY M+i p x detW =

∫ π

−π

dx

2π
e−S(x), (26)

SY M = −β

2

(

U + U−1
)

= −β cos x , U = ei x

det W = 1 +
κ

2

[

eµU + e−µU−1
]

= 1 + κ cos(x − iµ).

Observables (exact expressions in terms of Bessel functions)

〈U〉 = 〈eix〉 , 〈U−1〉 = 〈e−ix〉 (Polyakov loop and its inverse)

〈cos x〉 = ∂
∂β

lnZ (plaquette), 〈n〉 = ∂
∂µ

ln Z =
〈

iκ sin(x−iµ)
1+κ cos(x−iµ)

〉

Notice that in complexifying the variable x → z = x + i y we must use

U−1 instead of U∗ everywhere. p is a “reweighting” parameter.

For κ = 0, β : imaginary we moke Minkowski quantization

For β : real and κ, µ 6= 0 we moke the chemical potential (HDM)
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“Minkowski” case

The Langevin process can be made to converge at p 6= 0 and using

reweighting to calculate the averages also at p = 0. General criteria

obtained from the analysis of the classical flow (Berges, Sexty).

The complex FPE for the complex “distribution” Pp(x)

Ṗp(x, ϑ) =
(

∂2
x − i ∂x (p + β sin x)

)

Pp(x, ϑ) (27)

can be easily solved for the Fourier modes. It shows good convergence

(depending on p) and the results agree with the averages from the LE

process (Aarts, Seiler, IOS). The analysis of the spectrum of the FPE

shows that in this region the eigenvalues are positive. Here we used

real noise (NR = 1, NI = 0).
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Figure 12: Pp(k, ϑ) (Re, Im) for p = 0 and β = 1, k = 1, 2, 3, 4 from

the complex FPE.
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This also illustrates the role of p.
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“‘Chemical potential” (symmetric HDM)

Here we take p = 0. The Langevin process converges everywhere

(Aarts, Seiler, IOS).

The complex FPE for the modes of the complex “distribution” P (x)

Ṗ (n, ϑ) = −n2P (n, ϑ) − nc+P (n + 1, θ) + nc−P (n − 1, ϑ) (28)

with c± = 1
2 (β + κe±µ) can be easily solved and shows good

convergence toward exp(−S). The results agree with the averages

from the LE process. This behaviour is supported by the analysis of

the spectrum of the FPE Hamiltonian and the fixed point structure of

the classical flow.

Here we used again real noise (NR = 1, NI = 0).
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U(1), Polyakov loop and its inverse vs µ

0 2 4 6 8
µ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e 

<
 e

ix
 >

β=1
β=2
β=3

0 2 4 6 8
µ

0.5

1

1.5

2

2.5

R
e 

<
 e

-i
x  >

β=1
β=2
β=3

48



U(1), density vs µ, plaquette vs µ2
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U(1), Lowest eigenvalues of the FP Hamiltonian (β = 1, κ = 0.5)
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U(1), Classical flow of the drift (below: β = 1, κ = 0.5 and µ = 0.1

and 2).
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For this problem we also have written down the RW process. In this

case we cannot take purely real noise. In the following we use

N = 1.01 + i 0.01.

The agreement with the LE process is very good.

We can also solve the real FPE (for the genuine probability distribution

ρ(x, y, ϑ)). Here we took N = 1.1 + i 0.1.
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U(1), Plaquette (vs β, µ = 1 and vs µ, β = 2, κ = 0.2)

RW compared with LE and exact.
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U(1), Real probability distribution (initial and asymptotic).
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One link SU(3) model

Here U ∈ SU(3) (∈ SL(3, C) after complexification),

SY M = −β

6

(

TrU + TrU−1
)

, (29)

det W = det (1 + κeµU) det
(

1 + κe−µU−1
)

(30)

All observables are easily computed exactly using the reduced Haar

measure. The LE proceeds in sl(3, C) for the 8 (now complex)

components of the potential:

U → U ′ = eiλa(ǫKa+
√

ǫηa) U (31)

Ka = −DaS, Daf(U) =
∂

∂α
f
(

eiαλaU
)

∣

∣

∣

α=0
.
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SU(3) Polyakov loop and its inverse vs µ

0 1 2 3 4

µ

0

0.1

0.2

0.3

0.4

0.5

R
e 

<
 P

 >

β=1
β=2
β=3

0 1 2 3 4

µ

0

0.1

0.2

0.3

0.4

0.5

R
e 

<
 P

-1
>

β=1
β=2
β=3

56



Phase 〈det W (µ)/det W (−µ)〉 for κ = 0.5 and various β vs µ, and

TrU †U/3 vs Langevin step for µ = 1, 2, 3, 4 at β = 1, κ = 0.5
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What can we learn from the simple models?

- both LE and RW can be applied

- there are good criteria for convergence (classical flow, FPE spectrum,

etc)

- there seems to be no tuning problem, rather we must avoid some

special conditions (such as NI = 0 for RW and real FPE) or “repair”

them (e.g., use p > 0 to force positive eigenvalues in the complex

FPE).

- similar results obtain for SU(3) (with complexification SL(3,C)),

therefore they are not model dependent (for SU(2) see Berges and

Sexty)

- what it is needed is to find equivalent criteria which can be applied to

lattice problems
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Minkowski QFT

Some recent lattice applications (Berges, Borsanyi, Sexty, IOS):

- for scalar field and SU(2) gauge theory,

- finite temperature and non-equilibrium evolution,

- convergence and uniqueness tests,

- relation with the Schwinger-Dyson equations
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Scalar field

ϕ̂ = aϕ, m̂ = am, x̂ = x/a, t̂ = t/at, γ = a/at, ϑ̂ = ϑ/a2, ǫ = δϑ/a2,

η̂ =
√

a3atδϑ η =
√

ǫ/γ a3η, 〈η̂(x̂, ϑ̂) η̂(x̂′, ϑ̂′)〉η = 2 δx̂,x̂′δ
ϑ̂,ϑ̂′

ϕ̂(x̂; ϑ̂ + ǫ) = ϕ̂(x̂; ϑ̂) +
√

ǫγ η̂(x̂; ϑ̂)

−i ǫ
(

2γϕ̂(x̂; ϑ̂) + m̂2ϕ̂(x̂; ϑ̂) + λϕ̂(x̂; ϑ̂)3
)

.

2γϕ̂(x̂; ϑ̂) = γ2
(

ϕ̂(x̂ + ê0; ϑ̂) + ϕ̂(x̂ − ê0; ϑ̂) − ctϕ̂(x̂; ϑ̂)
)

−
∑

i

(

ϕ̂(x̂ + êi; ϑ̂) + ϕ̂(x̂ − êi; ϑ̂) − 2ϕ̂(x̂; ϑ̂)
)

The fields are the complex extensions of the original ones and all

observables analytic extensions of the original observables.

One gives initial conditions in physical time t, e.g. ϕ(x, 0;ϑ) = ϕ0(x),

ϕ(x, 1;ϑ) = ϕ(x, 0;ϑ) and a starting configuration ϕ(x, t; 0).
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Figure 15: 3+1 dim free field, 123.20, γ = 4,M = 2.63 − i0.01, λ = 0.

Correlations (classical, quantum), energy and Im < ϕ2 >.
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Figure 16: 3+1 dim , ϕ4 theory, 83.20,M = 0, λ = 9, γ = 4. Large ϑ

correlations from different starting configurations, ϑ dependence, corre-

lations from different start configuration at various ϑ.
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QCD with non-zero density

HDM approximation

The structure is similar to the one link SU(3) model, replacing the

links by plaquettes in S, etc.

Preliminary, for illustration: the real part of the Polyakov loop and its

inverse on a 44 lattice at β = 5.6, κ = 0.12 and 3 flavours vs µ, and

TrU †U/3 vs θ at µ = 0.5 and 0.9.
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7. General observations

1. Run-away trajectories: can be systematically dealt with by

adaptive step size. General requirement: Use high precision since

accumulating rounding off errors are very dangereous!

2. Systematic discretization errors: not relevant at the step size used.

3. Convergence. This is the most urgent problem:

- For the Minkowski problem one observes some times

non-uniqueness of the solution: this appears related to solution

multiplicities of the Dyson-Schwinger equations. This may

provide a way of approaching this problem.

- The chemical potential problem appears better behaved, in

particular the convergence does not seems to deteriorate with

increasing µ (at variance with the MC reweighting method).

General tests are, however, missing.
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- One can also try to better control the method by redesigning

the process. For instance:

- Kernel controlled LE (to generate positive real parts in the

spectrum of the FP Hamiltonian) without changing the

averages,

- reweighting (changing the drift and recalculating the

averages),

- there does not seem to be a tuning problem, but rather

definitely wrong choices of parameters or the possibility of

systematic improvement.

- We need to design tests as powerfull as the fixed point

structure of the classical flow, or the spectrum of the FPE, but

which are operational for a lattice problem (many d.o.f.).

65



β= 1.0 q= -3.0 q= -2.0 q= -1.0 q= 1.0 q= 2.0

p Re Im Re Im Re Im Re Im Re Im

-3.0 -.227E-04 0.114E-02 -.129E-01 0.298E-03 -.176E-02 -.127 -.108 5.87 -22.5 -.997

exact -.395E-15 0.107E-02 -.128E-01 0.602E-14 0.966E-15 -.127 -.651E-14 5.87 -22.5 0.631E-14

-2.0 0.924E-04 0.232E-02 -.216E-01 0.858E-03 -.343E-02 -.170 -.109 3.83 -6.67 -.629

exact 0.310E-15 0.217E-02 -.216E-01 -.628E-15 -.135E-15 -.170 -.215E-14 3.83 -6.66 -.341E-14

-1.0 0.289E-03 0.721E-02 -.450E-01 0.273E-02 -.725E-02 -.259 -.373E-01 1.74 1.21 -.183

exact 0.107E-16 0.563E-02 -.445E-01 -.231E-15 0.339E-15 -.261 0.410E-15 1.74 1.00 -.193E-15

0.0 20.7 13.9 1.06 -.247 0.146E-01 0.168E-03 0.639E-01 -.350E-03 0.972 -.445

exact -.372E-16 0.256E-01 -.150 -.729E-16 0.149E-15 -.575 -.138E-15 -.575 -.150 0.363E-16

1.0 -5.78 -11.1 1.21 0.193 0.435E-01 1.74 0.720E-02 -.257 -.439E-01 -.285E-02

exact 0.109E-15 -.261 1.00 0.188E-15 -.309E-15 1.74 -.593E-15 -.261 -.445E-01 0.994E-16

2.0 -.149E+04 -66.6 -6.95 0.382 0.116 3.83 0.350E-02 -.169 -.213E-01 -.857E-03

exact -.280E-14 3.83 -6.66 -.135E-14 0.952E-15 3.83 0.185E-15 -.170 -.216E-01 0.355E-15

3.0 -4.42 -37.2 -22.5 0.974 0.101 5.87 0.183E-02 -.126 -.128E-01 -.296E-03

exact -.148E-12 -39.1 -22.5 0.981E-13 0.336E-13 5.87 -.182E-15 -.127 -.128E-01 0.237E-15

4.0 -8.26 -178. -46.5 1.33 0.101 7.90 0.112E-02 -.101 -.852E-02 -.112E-03

exact -.606E-11 -178. -46.4 0.163E-11 0.292E-12 7.90 -.402E-13 -.101 -.845E-02 0.196E-13

5.0 -14.4 -463. -78.5 1.72 0.100 9.91 0.764E-03 -.837E-01 -.608E-02 -.410E-04

exact 0.265E-09 -460. -78.3 -.451E-10 -.569E-11 9.92 -.649E-14 -.838E-01 -.602E-02 -.208E-12

66


